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Abstract

The detection of incidents and the subsequent incident response activities and
traffic management activities have long been known to have a significant impact
on the resultant magnitude of incident induced delay. Efforts to reduce incident
induced delay have tended to focus on reducing the time to detect incidents (i.e.
automatic incident detection) and to provide appropriate and swift emergency
response. However, efforts to develop traffic management strategies in response
to incidents are often hampered by a lack of knowledge of how long the incident
is likely to exist. This lack of knowledge also is problematic for disseminating

information to travellers about the incident.

In practice, traffic management personnel, police, etc. are able to provide rough
estimates of the duration of incidents on the basis of experience and the known
characteristics of the crash (e.g. number of vehicles involved, type of vehicles,
etc.). The purpose of this work is to examine the feasibility of developing a
model that permits the prediction of crash duration on the basis of observable
crash characteristics. Such a model could be integrated within the traffic
management centre (TMC) software to assist operators in selecting appropriate
traffic management response strategies and in the provision of information to

drivers.

The examination of the potential to develop a crash duration prediction model is
done on the basis of field data for an urban freeway (the QEW) in Toronto

Canada. Field data are obtained from two unrelated databases: the provincial



crash database and the freeway traffic management system incident log database.
It is found that linking these databases is a complex problem that has a
significant influence on the explanatory power of the crash duration prediction

model.
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1 Introduction

Most large urban centres in North America have freeways as primary surface
transportation corridors. Over the past several decades there has been a
continuing trend of increasing congestion on these freeways resulting in
significant direct and indirect costs to businesses, commuters, and the
environment. For example, a recent mobility study conducted in the U.S.
estimates the cost of traffic congestion in terms of wasted fuel and lost
productivity for the entire U.S. for 2001 to be $69.5 billion, a 7% increase from
the previous year [1]. While some of this congestion is a result of demand
exceeding the capacity supplied by the transportation system, the literature
indicates that the majority (approximately 60%) of congestion is caused by
incidents, such as crashes, spilled load, stalled vehicles, debris, etc., that causes a
temporary reduction in the capacity of a portion of the road network. [2].
Therefore, efforts to diminish the effects of non recurrent congestion will have a

significant impact on mitigating freeway congestion.

Most major urban centres in North America have responded to these increases in
freeway congestion by developing Traffic Management Programs (TMP) to
reduce the effects of non recurrent congestion. The programs typically include
the deployment of field traffic surveillance equipment (e.g. loop detectors,
CCTV cameras, etc.), traffic control equipment (e.g. ramp meters), traveller
information systems (e.g. changeable message signs, highway advisory radio),

and an emergency dispatch centre (e.g. police, fire, paramedic).



Given the large portion of total traffic congestion that is caused by incidents,
most TMPs have focused their operations to mitigate incident effects as much as
possible, especially the duration of an incident. Incident duration is often
described in terms of a number of distinct phases, namely, detection, response,

treatment and dissipation of effects as illustrated in Figure 1 [3].

The Highway Capacity Manual considers as part of the incident duration the
queue dissipation time after the incident has been removed from the roadway.
However, not all researchers or practitioner agree on this definition. Some
authors [e.g. 4, 5] do not consider the time for the effects of the incident to
dissipate as part of the incident duration. Other researchers [6] have suggested

that an incident does not have to go through all the phases defined in Figure 1.

Irrespective of the definition one adopts to describe the duration of an incident, it
is clear that the length of time that the freeway capacity is reduced has a
significant influence on the delay caused by the incident. Consequently, the
expected duration of an incident is an important factor that influences the type of
traffic management strategy to implement and the type of information that

should be provided to travellers.

Currently there does not appear to be a systematic means of estimating incident
duration in real-time. TMC operators are usually able to provide some insight as
to the expected duration of an incident on the basis of their personal experience
and observable incident characteristics (e.g. number of vehicles involved).
However, the reliability of this method is unknown and likely varies significantly

as a function of the operator, their level of experience, etc. Furthermore, given



the absence of knowledge of the reliability of the operator based estimates of
incident duration, incident duration estimates made this way are rarely

disseminated to the public and are used for internal purposes only.

Incident duration is expected to depend on a number of incident characteristics
such as: the type of road on which the incident has occurred, weather, number of
lanes blocked, time of day, type of vehicles involved (i.e. automobiles, trucks or
buses), number and severity of personal injuries, involvement of hazardous
materials, whether or not a load has been spilled and if so the type, quantity, and
location of the spilled material, and response time of personnel dispatched to the
incident site. Previous studies have shown that different factors are important for
estimating incident duration. For example, Garib et al. [7] calibrated a log linear
regression model and found that the log of incident duration is dependent on six
variables, namely: number of lanes affected, number of vehicles involved, truck
involvement, time of day, time of Police arrival, and weather conditions. In
another study, Giuliano [8] used a series of ANOVA tables on a highly
categorized database to identify which factors influenced incident duration. Her
research developed separate models for incidents and accidents using the log of
duration as the dependent variable to evaluate 12 different factors suspected to
influence duration. The author’s findings show that duration is a function of the

type of incident, number of lanes closed, and time of day.

The majority of work described in the literature that addresses the issue of
predicting incident duration has focussed on developing models that assume

complete knowledge of incident characteristics. As such these models are not



generally suitable for real-time application as certain incident characteristics are
often not known when the incident first occurs. For example, the number and
severity of personal injuries are certainly not known until at least after the time
when medical personnel arrive on the scene, and may not even be known until

several hours after the injured persons arrive at a hospital.
The research described in this paper has three main objectives:

1. Develop an integrated database including crash duration and crash

characteristics.

2. Identify factors contained within the integrated database that are useful

for predicting crash duration

3. Develop a static statistical model as a precursor to developing models

that can be used to estimate crash duration in real-time.

This paper is organized as follows. The next section describes the study
methodology. Section 3 describes the field data sources and database integration
process that was developed and applied to match crash records from different
data sources. Section 4 describes the calibration of the crash duration prediction

models. Conclusions and recommendations are provided in Section 5.

2 Study Methodology
The methodology adopted in this study consisted of 4 sequential stages as
illustrated in Figure 2. The research started with an extensive review of the

literature to identify other studies that have examined predictive relationships for



incident duration. At the conclusion of this phase, we decided to define the
scope of our research to examine duration of only crashes, and not consider other
types of incidents. Therefore, in the remainder of this paper, we refer to crash

duration models rather than incident duration models.

The second phase attempted to assemble a database for Ontario crashes that
contained information on the characteristics and environmental conditions
associated with each crash. Unfortunately, there is no single existing database
that contains all of this information, and therefore it was necessary to integrate
several separate databases. This data integration, which presented a range of

challenges, is described fully in the next section.

We elected to adopt an incremental approach to developing crash prediction
models in the sense that we first develop temporally static models assuming full
knowledge of all crash and environmental characteristics. The characteristics of
these static models provide insights to the appropriate means of developing real-

time models that explicitly consider the temporal aspect.

Consequently, the third phase consisted of formulating and calibrating static
crash duration prediction models on the basis of the data contained within the
integrated database developed in phase 2. The results from this phase are

described in Section 4 of this paper.

The fourth phase, which is not described in this paper, consists of formulating

and calibrating real-time crash duration prediction models.



3 Development of the Crash Duration Database

The development of the crash duration database began with an assessment of
available data sources. We were not able to identify any existing databases that
contained all of the information we required to develop the crash duration
models and therefore we proceeded to identify data sources that could be
integrated to provide a single database capable of supporting the proposed
research. Given our location, we elected to utilize data from the Province of
Ontario, though it is worth noting that similar data sets to those used for Ontario
are available in most other provinces and states and the methodologies we used

would be equally valid for application to data from these other locations.

3.1 Description of Field Site

Existing crash databases in the Province of Ontario do not contain information
detailing crash duration. Therefore it was necessary in this study to obtain this
data from another source. The only source that provides this information is
freeway traffic management system (FTMS) incident logs. Therefore, our field
site from which we could obtain data was restricted to provincial highways
operating under an FTMS. After consulting with the Ontario Ministry of
Transportation, it was decided to select a 19 km section of the Queen Elizabeth
Expressway (QEW) in Mississauga between Royal Windsor Drive and Highway

427 (Figure 3) for two main reasons:



1. Historical incident log data were available for this section for a period

of 5 years. '

2. MTO staff felt that the data for this section were likely more reliable
than from other FTMS covered highway segments as a result of fewer

construction activities, etc.

The FTMS operating on the 19 km section of the QEW illustrated in Figure 3
includes 15 CCTV cameras (indicated by the yellow solid circles in Figure 3)

and 53 loop detector stations.

3.2 Description of Data Bases

The FTMS maintains an electronic log of all incidents detected by FTMS
incident detection algorithms or by TMC personnel, and those reported to the
TMC by emergency personnel. The incident log maintains a record of a number
of incident attributes including the type of incident (accident, disabled vehicle,
roadwork, debris, other, unconfirmed events), when detection occurred, any

changes to the status of the incident, the time the incident was cleared, etc.

! Note, for this study, we made use of only 3 years of data for calibrating the
crash prediction models. The remaining 2 years of data were reserved for future

model validation.
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Incident log data was obtained from MTO for the 19 km test section for 3 years

(1999 —2001).

The original format of the incident logs is an ASCII text file containing blank
spaces between lines. Furthermore, the incident logs contain entries for all
incidents, not just crashes. A custom Visual Basic program was written to
convert the incident logs from ASCII format to MS Access database format and
to extract only those entries from the incident logs that were designated as
crashes and that occurred within the 19 km section defined in Figure 3. This

resulted in a total of 587 crashes remaining within the Incident Log database. *

MTO maintains a crash database entitled the Accident Data System (ADS) that
contains data for all reported vehicle collisions for the entire province. In the
event of a motor vehicle accident it is mandatory for police to be called to the
scene whenever there is personal injury or property damages exceed a specified
value. In this event, the attending police officer completes a motor vehicle

accident report (MVAR) form. If there are no personal injuries and property

2 A summary form of the detailed incident logs were obtained from MTO. The
detailed logs were not available at the time of this study. The summary form

does not included information such as the lane block pattern.

? Analysis of the Incident Log database revealed that crashes are only recorded in
the database for weekdays between the time of 6 AM and 9 PM implying that the

traffic management centre was only staffed during these times.

11



damages are estimated to be less than the specified value, then the involved
parties can present their statements at a collision reporting centre and a self-
reported accident (SRA) form is completed. Data that are entered into ADS are

obtained from police reports and from self reported collision reports.

The ADS database consists of three separate data tables entitled b, d, and i. Table
b contains general information about the crash. Table d contains information
about involved vehicles and drivers. Table i contains information about injured
persons. With this structure, there are generally multiple records in Tables b, d,
and i for each individual crash event (Figure 4). This data structure is not
convenient for our use so we restructured the database to create a single data
table with one record for each crash event. Furthermore we extracted only those
records pertaining to crashes that were reported to have occurred on the QEW
(not the ramps) between Royal Windsor Drive and Highway 427. To be
consistent with the Incident Log database, only crashes that were rporeted to
have occurred on weekdays between the time of 6 AM and 8 PM were

considered.

ADS data were obtained from MTO for the 19 km test section for 5 years (1997
—2001). Only data for the years 1999, 2000, and 2001 were used in the matching
process. This resulted in 1,184 crashes — approximately two times the number of
crashes recorded in the Incident Log database. It is not clear why so many
crashes are absent from the Incident Log database, but it is suspected that the

missing crashes were minor events that were either not detected by the FTMS or

12



were not confirmed by the operators and therefore were not included within the

Incident Log database.

3.3 Database Integration Process

The ADS contains a great deal of information regarding the accident type,
number of involved persons, number and severity of injuries, road and weather
conditions, driver characteristics, etc. However, the database does not contain
any information that defines directly the duration of the accident. Consequently,
there is a need to match records in the FTMS Incident Log database with records
in the ADS for the same crash event. Unfortunately, there is no direct link
between these two databases and there is no unique crash event identifier present
in both databases that can be used to directly carry out the record matching
process. Consequently a more elaborate matching process is required to integrate

these two databases.

The integration of the FTMS Incident Log database and the ADS database is

illustrated in Figure 5.

Since there is no unique crash event identifier that can be used to match crash
records in the Incident Log database and the ADS a method of matching the
records was devised. Both databases contain descriptors of crash attributes that
can be used in the matching process. A review of the fields in each database
revealed that there are 4 descriptors of the crash that are common to each

database (date, time, location, and direction).
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However, it must be emphasized that the values for these fields in each database
are obtained from different sources. For example, consider the time field which
is intended to reflect the time at which the crash occurred. The entry in the ADS
database is obtained from either the reporting police officer (MVAR) or the
individual(s) involved in the crash (SRA). This time is typically an
approximation and is unlikely to be accurate to more than the nearest 10 minutes.
In contrast, the time reported in the Incident Log database is the time when the
record is created in the on-line database. The record may be generated from an
automatic incident detection algorithm, in which case the time may be a minute
or so later than the true crash occurrence time. In the case that the record is
generated by an operator, the time lag may be longer. It seems unlikely that the

recorded time would precede the actual time of occurrence.

Figure 6 illustrates the fields used to match crash events from the ADS database
and the Incident Log database. The units of measurement for data, time and
direction are the same in both databases. The measurement of location is
conducted differently in each database. The ADS database describes the location
of the crash in terms of provincial linear highway reference system (LHRS)
number and an offset. Appropriate use of this system permits the accurate

reference of a crash location to the nearest meter.

In the Incident Log database, crash locations are referred to in terms of the
location of the nearest upstream loop detector station. Loop stations are located
on average approximately 500m apart, with some variability along the network

(from a minimum of 280m to a maximum of 1,250m). Consequently, the
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location referencing scheme induces a maximum error that can range from as
little as approximately 270m to approximately 1,240m. The error associated
with locations from the ADS database is unknown but is likely to be larger for

self reported crashes than police reported crashes.

Given the uncertainty associated with the error distributions associated with the 4
matching fields and the different databases, the matching process developed
consisted of a composite error index (Equation 1).

Eus = 7o DA,—DB,)2+7T(TAI —TB,)ZWV(VA, —Ve,)2+ (1)
J/XXA,—XB,. +e +e, t+e

where:

E,, = composite error calculated between crash record i from the
ADS database and record j from the Incident Log database

A, = ™ record in the Incident Log database

B; = j"record in the ADS database

D = date of crash as recorded in the database

T = time of crash occurrence as recorded in the database (hours)

vV = recorded direction of travel for lanes in which crash occurred
(Eastbound = 0; Westboudn = 1)

X = recorded location of the crash (km)

YD = weighting factor for date deviations

yr = weighting factor for time deviations

Yy = weighting factor for direction deviations

15



Vx weighting factor location deviations

e; e; e; = heuristic discrepancy error

As indicated in Equation 1, the reported location of the crash is defined in terms
of distance (km) from a predefined origin. The ADS and the Incident Log
databases rely on location referencing systems that are not directly comparable.
Therefore, each location referencing system was transformed to provide the
crash location in terms of the distance from a fixed origin located at the western

extent of the study area.

The last three terms in Equation 1 (i.e. e, e, and e;) permit the inclusion within
the matching process the expectation that self-reported crashes generally have a
shorter duration than do police reported crashes. If the crash duration associated
with a particular match falls within the limits specified in Table 1, then the value

of the discrepancy error term is greater than zero; otherwise the value = 0.

The intervals were determined subjectively on the basis of a review of the crash
data and opinions of personnel at MTO who are responsible for the ADS

database and the Incident Log database.

The matching process proceeds by sequentially stepping through the crashes in
the Incident Log database, and for each record attempting to identify the
corresponding crash record in the ADS database that minimizes the composite

error as defined in Equation 1.

In addition to the crash duration, the integrated database contained 35 fields

describing the crash, roadway, and environmental conditions (Table 2). These

16



fields represented the characteristics that could be used as independent variables

in the development of a crash duration model.

Initial values (Table 3) for the weighing coefficients (yp, yr, y», yx) and the
discrepancy errors (e;, e e;) were determined subjectively. Using these values,
the integrated database contained 298 crash records. The mean crash duration
was 42.5 minutes with a standard deviation of approximately 65 minutes. The
distribution of crash duration, illustrated in Figure 7, was found to be

approximately log-normal.

The next section describes the development of a crash duration model and
includes a sensitivity analysis of the effect of the weighting coefficients and the

discrepancy errors on the performance of the crash duration models.

4 Development of a Crash Duration M odel

A number of model structures are available by which to establish the relationship
between crash duration and independent variables. We elected to begin the
model development assuming a first order linear model and conduct the
calibration of the coefficients of the independent variables using least squared

regression.

The statistical analysis software package SAS was used for all model
calibrations. The step-wise approach was adopted for determining the
independent variables that should be included within the models. The F-test was
used to decide whether an independent variable made a significant contribution

to the model's ability to explain the variance observed in the data. A level of
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significance of 15% was chosen for adding and removing independent variables

to/from the model.

The resulting model consisted of 6 independent variables (SRA, Truck, Rollover,
EmergencyEquipment, Damage4, and Alignment2) plus a constant. All
coefficients are statistically significant at the 95% level, however, the
explanatory power of the model is rather poor as indicated by R? = 0.22.
Furthermore, for the explanatory factors (i.e. alignment and damage,) the model
includes only a single category (i.e. algithment? and damage4) while other

categories are ignored.

In the interest of improving the explanatory power of the model, and to explore
the effect of the weighting factors used in the composite error function (Equation

1) a sensitivity analysis was conducted.

For each set of weighting coefficient values considered, a step-wise regression
analysis was conducted as described above. This sensitivity analysis revealed
that the use of the heuristic discrepancy error terms (e; e, e;) introduces bias
into the crash duration analysis database by discouraging matches for self-
reported crashes (SRA=1) of long duration and discouraging matches for police
reported crashes (SRA=0) of short duration. As a result of these findings, the
heuristic discrepancy error terms were removed from the composite error

expression for all further analyses.
It was also found that the maximum permissible error (£, , ) has a strong

influence on the number of successfully matched crashes (i.e. number of records
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in the crash duration analysis database) and the explanatory power of the
resulting crash duration model. As shown in Figure 8, as the maximum
permissible error increases, the number of records in the crash duration analysis
database increases but the explanatory power of the linear regression model (as

indicated by the R?) significantly decreases.

For a very small maximum permissible error (e.g. 0.05) the explanatory power of
the linear regression is rather good (R* = 0.53). However, for this case the
database contains only 43 crashes and an examination of the model revealed a
lack of a physical basis for the independent variables included in the model.
These observations tend to imply that the higher explanatory power of the model
for very low values of the maximum permissible error is an aberration rather

than a statistically and physically valid result.

5 Conclusonsand Recommendations

This paper has presented a study that has attempted to develop a static crash
duration prediction model. A crash duration database was developed from two
separate databases by matching crash records that minimized a composite error
term. Linear regression models were calibrated using the resulting crash

duration analysis database through the use of step-wise regression.
The results from this study have lead to the following conclusions:

1. Existing provincially maintained accident databases do not include

information on the duration of the event. Consequently, the
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development of a crash duration prediction model requires the

integration of two or more separate databases.

The integration of the provincial accident database (ADS) and the
FTMS incident log database represented a much more challenging
problem than originally anticipated. A heuristic crash record matching
technique was developed that estimates a composite error considering
reported crash location, direction of traffic flow in lanes, date and time

of day.

The number of matched records is highly dependent on the weighting

coefficients in the composite error function.

The best first order linear regression models were determined using
step-wise regression. The explanatory power of these models (R?)
varied from 0.1 to 0.58 depending on the weighting coefficients chosen

for the composite error function.

The current matching process appears to lack sufficient constraints to
provide a reliable crash duration analysis database. It is expected that
the availability of more detailed incident logs will provide additional
crash characteristics that can be incorporated within the composite

error function and provide more accurate matches.

The explanatory power and the statistical and physical reliability of the
best first order regression models of crash duration appear to be rather

poor. While other regression model forms (e.g. higher order linear;
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non-linear; etc.) may provide better results, it appears that
improvements to the matching process may be necessary before crash

prediction models can be calibrated that have practical value.
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Tables

Table 1: Coefficients for heuristic discrepancy error terms from

Equation 1

Discrepancy error

Police reported crash

Self-reported crash

(MVAR) (SRA)
e; 0<CD<10 CD>120
e 10<CD <20 60 <CD <120
e; 20<CD <30 30<CD <60

CD = crash duration in minutes
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Table 2: Fields within the integrated crash database

# | Variable Category # | Variable Category

1 | VehNum Continuous 19 | alignment2* Straight on hill
2 | damage0* | Unknown 20 | alignment3* Curve on level
3 | damagel* | None 21 | alignment4* Curve on hill
4 | damage2* Light 22 | EmergencyEquipment | Binary

5 | damage3* Moderate 23 | weatherl* Clear

6 | damage4* Severe 24 | weather2* Rain

7 | damage5* Demolished 25 | weather3* Snow

8 | classl* Fatal injury 26 | weather4* Extreme conditions
9 | class2* Non fatal injury 27| SRC Binary

10 | class3* Property damage only 28 | ejection Binary

11 | light1* Daylight 29 | truck Binary

12 | light2* Dawn 30 | loaded Binary

13 | light3* Dusk 31 | TowedVeh Binary

14 | light4* Dark 32 | Rollover Binary

15 | surfacel* Dry 33 | FixedObject Binary

16 | surface2* Wet 34 | Direction** Binary

17 | surface3* Snowed-freezed 35 | PeakTime Hour of day
18 | alignment1* | Straight on level

* Binary “dummy” variables

**Direction: 1 if westbound; 0 if eastbound

“Binary”: 1 if event ocurred; 0 if event did not occur
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Table 3: Weighting coefficient values

Weighting coefficient | Value

7 10
yr 160
" 10
v I
e; 10
e 7
ez 3

Max EA,B,. 10
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Figures

Occurrence Detection Response Clearance End of Incident

Timeline

Detection Time Response Time ! Treatment Time ! Dissipation of

Effects
———————)

Incident Duration

Occurrence is the time when the incident occurred. In practice, this time is

typically not known.

Detection is the time when the TMC is made aware (via automatic incident
detection systems or through other mean) that an incident has occurred. In
many TMP systems detection time is the time when the TMC personal
confirms that an incident has taken place. Detection is typically

accomplished by way of visual confirmation via CCTV cameras.

Response is the time when responding agencies (e.g. police, maintenance

crews, fire and/or medical personnel) arrive at the incident site.

Clearance is the time when the travel lanes of the roadway have been cleared

of vehicles and/or debris.

End of Incident is the time when the queue that resulted from the incident has

dissipated.

Figure 1: Definition of incident stages (from ref. 3)
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Figure 2: Study approach
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Figure 3: Data collection site on the QEW in Mississauga, Ontario

(Source: [9])

29



Table “b” Table “d” Table “i”

S O S O i e

1Driver info &

Figure 4: Structure of ADS database
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Figure 5: Layout of Crash Duration Analysis Database
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